independent x X E As the population of a city increases, the number of schools in the. } ∣ x Y ) ( For example, when an independent variable increases, the dependent variable decreases, and vice versa. , CDT-2HFS is a proficient technique to cope with unpredictable and awkward information in realistic decision problems. i As stated above, Pearson only works with linear data. / t ) {\displaystyle \operatorname {corr} (X,Y)=\operatorname {corr} (X,\operatorname {E} (X\mid Y))\operatorname {corr} (\operatorname {E} (X\mid Y),Y)}. Y {\displaystyle [0,+\infty ]} And now let’s look at our correlations, with our original Test 2. , respectively, and {\displaystyle \sigma _{X}} The correlation coefficient (r) indicates the extent to which the pairs of numbers for these two variables lie on a straight line.Values over zero indicate a positive correlation, while values under zero indicate a negative correlation. , > The degree of dependence between variables The following scatter plot excel data for age (of the child in years) and height (of the child in feet) can be represented as a scatter plot. {\displaystyle X} Types: Description: Positive and negative correlation: Positive Correlation is said to be positive when the values of the two variables move in the same direction so that an increase in the value of one variable is followed by an increase in the value of the other variable. However, we see that spearman and Kendall are exactly the same, as they is not as dependent upon the granularity of the integers. However, the Pearson correlation coefficient (taken together with the sample mean and variance) is only a sufficient statistic if the data is drawn from a multivariate normal distribution. X … − , determines this linear relationship: where The line has a negative gradient and therefore a negative correlation. Correlation only assesses relationships between variables, and there may be different factors that lead to the relationships. Then {\displaystyle y} In the same way if A correlation matrix is simply a table which displays the correlation coefficients for different variables. I gave each student a sheet of dot stickers. and Create your own correlation matrix. Introductory Business Statistics is designed to meet the scope and sequence requirements of the one-semester statistics course for business, economics, and related majors. X Found inside – Page 20To correlate GRE item - types with SAT scores , it was important to verify which item - types correlated with ... The highest correlations occurred between the GRE Quantitative Item - Types and the SAT Math ( SAT - M ) subscore and ... {\displaystyle \operatorname {corr} } and/or ( The examples are sometimes said to demonstrate that the Pearson correlation assumes that the data follow a normal distribution, but this is only partially correct. Note: Statistical Tool: Pearson product-moment correlation coefficient (Pearson r) Table 8 Correlation Between the Math 11 and Math 12 Grades of the Respondents n = _____ Variables computed tabular decision remark Coefficient of determination r r r 2 Math 11 grades 0.513 0.291 an d (moderate correlation) Reject Ho significant 0.5062 Math 12 . Found inside – Page 38CORRELATION A statistic called correlation tells you if two measurements go together along a straight line . A scatterplot is one way of looking at correlation . There are three different types of correlation . у 10 9 8 7 6 5 Positive ... {\displaystyle Y} i ( Y X {\displaystyle \sigma _{X}} This is called correlation. These correlations are going to be vastly different than our previous correlations. Dowdy, S. and Wearden, S. (1983). ( CFI's Math for Corporate Finance Course explores the financial mathematics concepts required for financial modeling. [19]: p. 151  The opposite of this statement might not be true. Karl Pearson developed the coefficient from a similar but slightly different idea by Francis Galton.[4]. Linear correlation and linear regression Continuous outcome (means) Recall: Covariance Interpreting Covariance cov(X,Y) > 0 X and Y are positively correlated cov(X,Y) < 0 X and Y are inversely correlated cov(X,Y) = 0 X and Y are independent Correlation coefficient Correlation Measures the relative strength of the linear relationship between two variables Unit-less Ranges between -1 and 1 The . X X = 0 Correlation is Positive when the values increase together, and ; Correlation is Negative when one value decreases as the other increases; A correlation is assumed to be linear (following a line).. means covariance, and X Y , This is likely due to the granularity of one of the sources of data changing to whole integers instead of the numerous decimal places they had previously. we can see pearson and spearman are roughly the same, but kendall is very much different. Several techniques have been developed that attempt to correct for range restriction in one or both variables, and are commonly used in meta-analysis; the most common are Thorndike's case II and case III equations.[13]. 1 Depending on the sign of our Pearson's correlation coefficient, we can end up with either a negative or positive correlation if there is any sort of relationship between the variables of our data set. Found insideFor instance, if verbal SAT score (X1) and grade in an English course (X2 have a high positive correlation, ... named verbal ability and math ability; these labels were based on the type of tests each factor correlated with most highly. Measures of dependence based on quantiles are always defined. Equivalent expressions for ¯ Y {\displaystyle s_{y}} (correlation of old knowledge with new knowledge)<br />Branches of a subject many a times are taught by different teachers, such . , Y , If there are no tied scores, the Spearman rho correlation coefficient will be even closer to the Pearson product moment correlation coefficent. The correlation matrix is symmetric because the correlation between y As it approaches zero there is less of a relationship (closer to uncorrelated). and The three correlations we will be using are some of the most common (though Kendall is less so). X If there is a correlation between two sets of data, it means they are connected in some way. If , ( ρ Y As the temperature increases, the number of ice-creams sold . ) Causation means that one event causes another event to occur. {\displaystyle X} [citation needed]Several types of correlation coefficient exist, each with their own . Mathematically, it is defined as the quality of least squares fitting to the original data. X {\displaystyle \rho _{X,Y}=\operatorname {corr} (X,Y)={\operatorname {cov} (X,Y) \over \sigma _{X}\sigma _{Y}}={\operatorname {E} [(X-\mu _{X})(Y-\mu _{Y})] \over \sigma _{X}\sigma _{Y}}}, where , X X Found inside – Page 244Consider the relationship between the quality of instruction students receive in their high school math classes ... (Partial correlations yield the same kind of coefficient as the other types of correlations discussed in this chapter. Found inside – Page 160personal meanings from the type Cognitive self-development correlate highly (all >0.7) so that one could suggest to group them together and assess them in one scale instead of four. However, Schröder's (2016) model comparisons show that ... Independent and dependent variable Quiz. X {\displaystyle \rho } 2 i {\displaystyle X} Correlation can have a value: 1 is a perfect positive correlation; 0 is no correlation (the values don't seem linked at all)-1 is a perfect negative correlation; The value shows how good the . ⁡ x is an estimate of the correlation coefficient X Correlation takes values between -1 to +1, wherein values close to +1 represents strong positive correlation and values close to -1 represents strong negative correlation. Types of Correlation . Kendall, M. G. (1955) "Rank Correlation Methods", Charles Griffin & Co. Lopez-Paz D. and Hennig P. and Schölkopf B. {\displaystyle Y} This type of correlation indicates the relationship between different branches ( or various divisions)of a given subject.<br />It also includes correlation of different topics in the same branch of a given subject. ∈ Examples of the Rank correlation coefficient are Kendall's Rank Correlation Coefficient and Spearman's Rank Correlation Coefficient. 2 Finally, the fourth example (bottom right) shows another example when one outlier is enough to produce a high correlation coefficient, even though the relationship between the two variables is not linear. three types of correlation coefficients for an. − ) X r {\displaystyle Y} type Math = class Public Class Math Public NotInheritable Class Math Inheritance. A better situation for spearman or kendall (but not for pearson) when the data is ORDINAL, in that it is ranked. Symbol Symbol Name Meaning / definition Example = equals sign: equality: 5 = 2+3 5 is equal to 2+3: . > Causation may be a reason for the correlation, but it is not the only possible explanation. If there is a strong connection or correlation, a ‘line of best fit’ can be drawn. The results are approximately in a straight line, with a positive gradient. x , X It is obtained by taking the ratio of the covariance of the two variables in question of our numerical dataset, normalized to the square root of their variances. ( [20] This dictum should not be taken to mean that correlations cannot indicate the potential existence of causal relations. − X {\displaystyle X} Scientists and technologists of all levels who are required to design, conduct and analyse experiments will find this book to be essential reading. This is a practical book on how to apply statistical methods successfully. LS0tDQp0aXRsZTogJ0NoYXB0ZXIgMjI6IENvcnJlbGF0aW9uIFR5cGVzIGFuZCBXaGVuIHRvIFVzZSBUaGVtJw0KYXV0aG9yOiAiRGF2aWQgU2FybWVudG8iDQpvdXRwdXQ6DQogIGh0bWxfZG9jdW1lbnQ6DQogICAgdGhlbWU6IGNlcnVsZWFuDQogICAgaGlnaGxpZ2h0OiB0ZXh0bWF0ZQ0KICAgIGZvbnRzaXplOiA4cHQNCiAgICB0b2M6IHRydWUNCiAgICBudW1iZXJfc2VjdGlvbnM6IHRydWUNCiAgICBjb2RlX2Rvd25sb2FkOiB0cnVlDQogICAgdG9jX2Zsb2F0Og0KICAgICAgY29sbGFwc2VkOiBmYWxzZQ0KLS0tDQoNCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQ0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KGVjaG8gPSBUUlVFKQ0KYGBgDQoNCiMgUHVycG9zZSBvZiB0aGlzIGNoYXB0ZXINCi0gSW4gdGhpcyBjaGFwdGVyLCB3ZSBhcmUgZ29pbmcgdG8gY292ZXIgdGhlIHN0cmVuZ3Rocywgd2Vha25lc3NlcywgYW5kIHdoZW4gb3Igd2hlbiBub3QgdG8gdXNlIHRocmVlIGNvbW1vbiB0eXBlcyBvZiBjb3JyZWxhdGlvbnMgKFBlYXJzb24sIFNwZWFybWFuLCBhbmQgS2VuZGFsbCkuIEl0J3MgcGFydCBzdGF0aXN0aWNzIHJlZnJlc2hlciwgcGFydCBSIHR1dG9yaWFsLg0KDQojIEEgQlJJRUYgb3ZlcnZpZXcgb2YgQ29ycmVsYXRpb25zDQoNClRoZSB0aHJlZSBjb3JyZWxhdGlvbnMgd2Ugd2lsbCBiZSB1c2luZyBhcmUgc29tZSBvZiB0aGUgbW9zdCBjb21tb24gKHRob3VnaCBLZW5kYWxsIGlzIGxlc3Mgc28pLg0KIA0KIyMgUGVhcnNvbiBDb3JyZWxhdGlvbjoNCi0gVGhlIFBlYXJzb24gcHJvZHVjdC1tb21lbnQgY29ycmVsYXRpb24gaXMgb25lIG9mIHRoZSBtb3N0IGNvbW1vbmx5IHVzZWQgY29ycmVsYXRpb25zIGluIHN0YXRpc3RpY3MuIEl0J3MgYSBtZWFzdXJlIG9mIHRoZSBzdHJlbmd0aCBhbmQgdGhlIGRpcmVjdGlvbiBvZiBhIGxpbmVhciByZWxhdGlvbnNoaXAgYmV0d2VlbiB0d28gdmFyaWFibGVzLiBJdCByZWxpZXMgb24gZm91ciBrZXkgYXNzdW1wdGlvbnMgKG11Y2ggb2YgdGhpcyBiZWxvdyBpcyB0YWtlbiBmcm9tIGh0dHBzOi8vc3RhdGlzdGljcy5sYWVyZC5jb20vc3Bzcy10dXRvcmlhbHMvcGVhcnNvbnMtcHJvZHVjdC1tb21lbnQtY29ycmVsYXRpb24tdXNpbmctc3Bzcy1zdGF0aXN0aWNzLnBocCkuDQoNCiMjIyBBc3N1bXB0aW9uIDE6DQotIFlvdXIgZGF0YSBpcyBpbnRlcnZhbCBvciByYXRpby4gVGhlc2UgdHlwZXMgb2YgY29udGlub3VzIGRhdGEgYXJlIGltcG9ydGFudCBmb3IgaG93IHRoZSBjb3JyZWxhdGlvbiBhc3N1bWVzIHZhbHVlcyBpbiB2YXJpYWJsZXMgd2lsbCBiZSByZWxhdGVkLCBhbmQgdGh1cyBvcmRpbmFsIG9yIGNhdGVnb3JpY2FsIHZhcmlhYmxlIGNvZGluZyB3b24ndCB3b3JrLg0KDQojIyMgU2VtaS1Bc3N1bXB0aW9uIDI6DQotIEFzIHN0YXRlZCBhYm92ZSwgUGVhcnNvbiBvbmx5IHdvcmtzIHdpdGggbGluZWFyIGRhdGEuIFRoYXQgbWVhbnMgdGhhdCB5b3VyIHR3byBjb3JyZWxhdGVkIGZhY3RvcnMgaGF2ZSB0byBhcHByb3hpbWF0ZSBhIGxpbmUsIGFuZCBub3QgYSBjdXJ2ZWQgb3IgcGFyYWJvbGljIHNoYXBlLiAgSXQncyBub3QgdGhhdCB5b3UgY2FuJ3QgdXNlIHBlYXJzb24gdG8gc2VlIGlmIHRoZXJlIGlzIGEgbGluZWFyIHJlbGF0aW9uc2hpcCBpbiBkYXRhLCBpdCdzIGp1c3QgdGhhdCB0aGVyZSBhcmUgb3RoZXIgdGVzdHMgc3VpdGVkIHRvIGFuYWx5emluZyB0aG9zZSBkaWZmZXJlbnQgZGF0YSBzdHJ1Y3R1cmVzLg0KDQojIyMgQXNzdW1wdGlvbiAzOg0KLSBPdXRsaWVycyBpbiB5b3VyIGRhdGEgY2FuIHJlYWxseSB0aHJvdyBvZmYgYSBQZWFyc29uIGNvcnJlbGF0aW9uLiBNb3JlIGluZm9ybWF0aW9uIG9uIHRoYXQgaGVyZTogaHR0cDovL3d3dy5wdXJwbGVtYXRoLmNvbS9tb2R1bGVzL2JveHdoaXNrMy5odG0NCg0KIyMjQXNzdW1wdGlvbiA0Og0KLSBUaGUgZGF0YSB5b3UgYXJlIGFuYWx5emluZyBuZWVkcyB0byBiZSBub3JtYWxseSBkaXN0cmlidXRlZC4gIFRoaXMgY2FuIGJlIGRvbmUgaW4gYSBjb3VwbGUgb2Ygd2F5cyAoU2tld25lc3MsIEt1cnRvc2lzKSBidXQgaXQgY2FuIGFsc28gYmUgZG9uZSBpbiBhIHF1aWNrIGFuZCBkaXJ0eSBtYW5uZXIgdGhyb3VnaCBoaXN0b2dyYW1zLg0KDQojIyBTcGVhcm1hbiBDb3JyZWxhdGlvbg0KLSBUaGUgbmljZSB0aGluZyBhYm91dCB0aGUgU3BlYXJtYW4gY29ycmVsYXRpb24gaXMgdGhhdCByZWxpZXMgb24gbmVhcmx5IGFsbCB0aGUgc2FtZSBhc3N1bXB0aW9ucyBhcyB0aGUgcGVhcnNvbiBjb3JyZWxhdGlvbiwgYnV0IGl0IGRvZXNuJ3QgcmVseSBvbiBub3JtYWxpdHksIGFuZCB5b3VyIGRhdGEgY2FuIGJlIG9yZGluYWwgYXMgd2VsbC4gVGh1cywgaXQncyBhIG5vbi1wYXJhbWV0cmljIHRlc3QuICBNb3JlIG9uIHRoZSBzcGVhcm1hbiBjb3JyZWxhdGlvbiBoZXJlLCBodHRwOi8vd3d3LnN0YXRzdHV0b3IuYWMudWsvcmVzb3VyY2VzL3VwbG9hZGVkL3NwZWFybWFucy5wZGYsIGFuZCBvbiBwYXJhbWV0cmljIHZzLiBub24tcGFyYW1ldHJpYyBoZXJlLCBodHRwOi8vd3d3Lm94Zm9yZG1hdGhjZW50ZXIuY29tL2RydXBhbDcvbm9kZS8yNDYuDQoNCiMjIEtlbmRhbGwgQ29ycmVsYXRpb24NCi0gVGhlIEtlbmRhbGwgY29ycmVsYXRpb24gaXMgc2ltaWxhciB0byB0aGUgc3BlYXJtYW4gY29ycmVsYXRpb24gaW4gdGhhdCBpdCBpcyBub24tcGFyYW1ldHJpYy4gIEl0IGNhbiBiZSB1c2VkIHdpdGggb3JkaW5hbCBvciBjb250aW51b3VzIGRhdGEuICBJdCBpcyBhIHN0YXRpc3RpYyBvZiBkZXBlbmRlbmNlIGJldHdlZW4gdHdvIHZhcmlhYmxlcy4gIEEgZGlzY3Vzc2lvbiBvZiBjb3JyZWxhdGlvbiB2cy4gZGVwZW5kZW5jZSBjYW4gYmUgZm91bmQgaGVyZSwgYW5kIGEgY29tcGFyaXNvbiBvZiBhbGwgdGhyZWUgb2YgdGhlc2UgY29ycmVsYXRpb25zIGNhbiBiZSBmb3VuZCBoZXJlLGh0dHBzOi8vd3d3LnF1b3JhLmNvbS9Qcm9iYWJpbGl0eS1zdGF0aXN0aWNzLVdoYXQtaXMtdGhlLWRpZmZlcmVuY2UtYmV0d2Vlbi1kZXBlbmRlbmNlLWFuZC1jb3JyZWxhdGlvbi1XaGF0LWlzLXRoZS1waHlzaWNhbC1kaWZmZXJlbmNlLCBodHRwOi8vd3d3LnN0YXRpc3RpY3Nzb2x1dGlvbnMuY29tL2NvcnJlbGF0aW9uLXBlYXJzb24ta2VuZGFsbC1zcGVhcm1hbi8uDQoNCiMgU2V0dGluZyB1cCB0aGUgZGF0YXNldCANCi0gTm93IGxldCdzIHNpbWx1YXRlIGEgZGF0YXNldCB0byB0YWtlIGEgbG9vayBhdCBob3cgdGhlIHJlc3VsdHMgb2YgdGhlc2UgZGlmZmVyZW50IGtpbmRzIG9mIGNvcnJlbGF0aW9zbiBtYXkgYmUgYWZmZWN0ZWQgYnkgZGlmZmVyZW50IHBhcmFtZXRlcnMgb2YgZGF0YS4gIEZpcnN0LCB3ZSBuZWVkIHRvIGluc3RhbGwgc29tZSBwYWNrYWdlcy4NCg0KYGBgIHtyLCBtZXNzYWdlPUZBTFNFLCBlY2hvPVRSVUV9DQojaW5zdGFsbC5wYWNrYWdlcygiTUFTUyIpDQpsaWJyYXJ5KE1BU1MpDQojaW5zdGFsbC5wYWNrYWdlcygiZ2dwbG90MiIpDQpsaWJyYXJ5KGdncGxvdDIpDQojaW5zdGFsbC5wYWNrYWdlcygicm9jb2NvIikNCmxpYnJhcnkocm9jb2NvKQ0KI2luc3RhbGwucGFja2FnZXMoInBzeWNoIikNCmxpYnJhcnkocHN5Y2gpDQojaW5zdGFsbC5wYWNrYWdlcygibHBTb2x2ZSIpDQpsaWJyYXJ5KGxwU29sdmUpDQojaW5zdGFsbC5wYWNrYWdlcygiaXJyIikNCmxpYnJhcnkoaXJyKQ0KI2luc3RhbGwucGFja2FnZXMoIm12dG5vcm0iKQ0KbGlicmFyeShtdnRub3JtKQ0KDQpgYGANCg0KLSBOb3csIHdlIG5lZWQgdG8gY3JlYXRlIGEgZGF0YXNldC4gTGV0J3MgdXNlIHRoZSBzY2VuYXJpbyBvZiBhbiBlbnRpcmUgZ3JhZGUgb2Ygc2Nob29sIGNoaWxkcmVuIGFjcm9zcyBhIGRpc3RyaWNzIHRha2luZyBhbiBlbmdsaXNoIHRlc3QgYXQgdGhlIGJlZ2lubmluZyBvZiB0aGUgc2Vtc3RlciAoVGVzdC4xKSwgYW5kIHRoZSBlbmQgKFRlc3QuMikuIExldCdzIG1ha2UgdGhlIGRhdHNldCBjb3JyZWxhdGVkIGF0IC43IChQZWFyc29uKS4gVGhlIHNvbHV0aW9uIGZvciBjcmVhdGluZyB0aGUgZGF0YSB0aGlzIHdheSBjYW4gYmUgZm91bmQgYXQ6IGh0dHBzOi8vc3RhY2tvdmVyZmxvdy5jb20vcXVlc3Rpb25zLzI4NDE2ODk3L3ItY3JlYXRlLWRhdGFzZXQtd2l0aC1zcGVjaWZpYy1jb3JyZWxhdGlvbi1pbi1yDQoNCmBgYCB7ciwgbWVzc2FnZT1GQUxTRSwgZWNobz1UUlVFfQ0KI1N0ZXAgMSAtIHNldCB0aGUgcGFyYW1ldGVycyBvZiBvdXIgZGF0YXNldCBhbmQgZGF0YQ0KDQojIERlc2lyZWQgQ29ycmVsYXRpb24NCmQuY29yIDwtIDAuNw0KIyBEZXNpcmVkIG1lYW4gb2YgWA0KZC5teCA8LSA4MA0KIyBEZXNpcmVkIHJhbmdlIG9mIFgNCmQucmFuZ2V4IDwtIDIwDQojIERlc2lyZWQgbWVhbiBvZiBZDQpkLm15IDwtIDkwDQojIERlc2lyZWQgcmFuZ2Ugb2YgWQ0KZC5yYW5nZXkgPC0gMjANCg0KIyNTdGVwMg0KIyBDYWxjdWxhdGlvbnMgdG8gY3JlYXRlIG11bHRpcGxpY2F0aW9uIGFuZCBhZGRpdGlvbiBmYWN0b3JzIGZvciBtZWFuIGFuZCByYW5nZSBvZiBYIGFuZCBZDQpteC5mYWN0b3IgPC0gZC5yYW5nZXgvNg0KYWRkeC5mYWN0b3IgPC0gZC5teCAtIChteC5mYWN0b3IqMykNCm15LmZhY3RvciA8LSBkLnJhbmdleS82DQphZGR5LmZhY3RvciA8LSBkLm15IC0gKG15LmZhY3RvciozKQ0KDQojIEdlbmVyYXRlIGRhdGEgLSBmb3IgdGhpcyBleGFtcGxlLCBsZXQncyB0aGluayBvZiB0aGlzIGFzIDYwIHN0dWRlbnRzIChyb3dzKS4gIExldCdzIHNheSB0aGV5IGFsbCB0b29rIGEgdGVzdCBhdCB0aGUgYmVnaW5uaW5nDQojb2YgdGhlIHNlbWVzdGVyLCBhbmQgdGhlbiBhZ2FpbiBhdCB0aGUgZW5kIG9mIHRoZSBzZW1lc3Rlci4gIFRoYXQgd2lsbCBnaXZlIHVzIDIgY29sdW1ucyBvZiBkYXRhLCB3aGljaCBpcyAyIHNjb3JlcyBwZXIgc3R1ZGVudCwNCiN3aXRoIGEgcGVhcnNvbiBjb3JyZWxhdGlvbiBvZiAuODAuICBOb3RlIHRoYXQgeW91IGNhbiBhZGp1c3QgdGhlIHBhcmFtZXRlcnMgYXMgeW91IGxpa2Ugd2l0aCB0aGUgY29kZSBpbiBTdGVwcyAxIGFuZCAyLiAgRm9yIG5vdywNCiN3ZSB3aWxsIGJlIG1ha2luZyBlYWNoIHRlc3Qgc2NvcmUgcm91Z2hseSBub3JtYWxseSBkaXN0cmlidXRlZC4NCg0Kb3V0IDwtIGFzLmRhdGEuZnJhbWUobXZybm9ybSg0MDAsIG11ID0gYygwLDApLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgU2lnbWEgPSBtYXRyaXgoYygxLGQuY29yLGQuY29yLDEpLCBuY29sID0gMiksIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICBlbXBpcmljYWwgPSBUUlVFKSkNCg0KIyBBZGp1c3Qgc28gdGhhdCB2YWx1ZXMgYXJlIHBvc2l0aXZlIGFuZCBpbmNsdWRlIGZhY3RvcnMgdG8gbWF0Y2ggZGVzaXJlZCBtZWFucyBhbmQgcmFuZ2VzDQojKHdlIGRvbid0IHdhbnQgbmVnYXRpdmUgdmFsZXMgb24gYSB0ZXN0IHNjb3JlKQ0KI2FuZCBhbHNvIHJlbmFtZSB0aGVtIHRvIFRlc3QuMSwgYW5kIFRlc3QuIDIgIFdlIHdpbGwgbGVhdmUgIlYxIiAkICJWMiIgaW4gdGhlIGRhdHNzZXQgaW4gY2FzZSB3ZSANCiN3YW50IHRvIGFsdGVyIHRoZSByYW5nZSBvZiB0aGUgZGF0YSBhbmQgdGhlIGNvcnJlbGF0aW9uIGxhdGVyLg0KDQpvdXQkIlRlc3QuMSIgPC0gKG91dCRWMSAtIG1pbihvdXQkVjEpKSpteC5mYWN0b3IgKyBhZGR4LmZhY3Rvcg0Kb3V0JCJUZXN0LjIiIDwtIChvdXQkVjIgLSBtaW4ob3V0JFYyKSkqbXkuZmFjdG9yICsgYWRkeS5mYWN0b3INCg0KIyNJdCBtYXkgYWxzbyBiZSBoZWxwZnVsIHRvIGdpdmUgZWFjaCBzdHVkZW50IGFuIElEIG51bWJlciBpbiBjYXNlIHdlIHdhbnQgdG8gbG9vayBhdCBzcGVjaWZpYyBzdHVkZW50IGRhdGEgbGF0ZXIgb24NCg0KI1RvIGRvIHRoaXMsIHdlIG5lZWQgdG8gY3JlYXRlIGEgdmFyaWFibGUsIG4sIHRoYXQgd2lsbCBhbHdheXMgYWRhcHQgdG8gdGhlIG51bWJlciBvZiBzdWJqZWN0cyB5b3UgaGF2ZSB0byBnaXZlIHRoZW0gYSBzdWJqZWN0IG51bWJlcg0KI2luIGNhc2UgeW91IHdhbnQgdG8gYWx0ZXIgdGhlIG51bWJlciBvZiBzdWJqZWN0cyBpbiB5b3VyIHNpbXVsYXRlZCBkYXRhIHNldA0KDQpuPC1sZW5ndGgob3V0JCJUZXN0LjEiKQ0KDQojbm93IHdlIG5lZWQgdG8gY3JlYXRlIGEgc3ViamVjdCBpZCBjb2x1bW4gDQpTdWIuSWQ8LWMoMTpuKQ0KDQojI2FuZCB0aGVuIHB1dCBpdCBhcyBhIG5ldyBjb2x1bW4gaW4gb3VyIGRhdGEgZnJhbWUgdXNpbmcgdGhlICJjYmluZCIgZnVuY3Rpb24NCkNsYXNzLkRhdGE8LWNiaW5kKElEPVN1Yi5JZCxvdXQpDQoNCiNhbmQgdGhlbiBjaGVjayBvdXIgd29yaw0KVmlldyhDbGFzcy5EYXRhKQ0KDQojV2UgY2FuIGFsc28gbG9vayBhdCBvdXIgaGlzdG9ncmFtcyB0byBtYWtlIHN1cmUgdGhlIGRhdGEgd2l0aGluIG91ciBpbmRpdmlkdWFsIHRlc3RzIGlzIG5vcm1hbGx5IGRpc3RyaWJ1dGVkDQoNCmhpc3Qob3V0JCJUZXN0LjEiKQ0KaGlzdChvdXQkIlRlc3QuMiIpDQoNCmBgYA0KDQotTm93IHdlIGNhbiBsb29rIG91dCBvdXIgZGF0YSBpbiBhIHNjYXR0ZXJwbG90LCBhbmQgYWxzbyBmaXQgYSBsaW5lYXIgdHJlbmQgbGluZSwgdG8gbWFrZSBzdXJlIGl0IGxvb2tzIGNvcnJlbGF0ZWQsIGFuZCBhbHNvIHRoYXQgdGhlIGxpbmVhciB0cmVuZCBsaW5lIGxvb2tzIGdvb2QuDQoNCmBgYHtyLCBtZXNzYWdlPUZBTFNFLCBlY2hvPVRSVUV9DQojIENyZWF0ZSBsaW5pZWFyIG1vZGVsIHRvIGNhbGN1bGF0ZSBpbnRlcmNlcHQgYW5kIHNsb3BlDQpmaXQgPC0gbG0ob3V0JFRlc3QuMiB+IG91dCRUZXN0LjEsIGRhdGE9b3V0KQ0KY29lZihmaXQpDQojIFBsb3Qgc2NhdHRlcnBsb3QgYWxvbmcgd2l0aCByZWdyZXNzaW9uIGxpbmUNCmdncGxvdChvdXQsIGFlcyh4PVRlc3QuMSwgeT1UZXN0LjIpKSArIGdlb21fcG9pbnQoKSArIGNvb3JkX2ZpeGVkKCkgKyBnZW9tX3Ntb290aChtZXRob2Q9J2xtJykNCiMgUHJvZHVjZSBzdW1tYXJ5IHRhYmxlDQpzdW1tYXJ5KG91dCkNCmBgYA0KDQojIENvbXBhcmluZyBDb3JyZWxhdGlvbnMNCk5vdyB3ZSB3YW50IHRvIGNoZWNrIG91ciB0aHJlZSBkaWZmZXJlbnQgcGFpcndpc2UgY29tcGFyaXNvbnMgYW5kIGNvbXBhcmUgdGhlaXIgdmFsdWVzLg0KDQoNCmBgYCB7ciwgbWVzc2FnZT1GQUxTRSwgZWNobz1UUlVFfQ0KY29yKENsYXNzLkRhdGEkVGVzdC4xLG91dCRUZXN0LjIsDQogICAgbWV0aG9kID0gYygicGVhcnNvbiIpKQ0KDQpjb3IoQ2xhc3MuRGF0YSRUZXN0LjEsb3V0JFRlc3QuMiwNCiAgbWV0aG9kID0gYygic3BlYXJtYW4iKSkNCg0KY29yKENsYXNzLkRhdGEkVGVzdC4xLG91dCRUZXN0LjIsDQogICAgbWV0aG9kID0gYygia2VuZGFsbCIpKQ0KYGBgDQoNCi0gd2UgY2FuIHNlZSBwZWFyc29uIGFuZCBzcGVhcm1hbiBhcmUgcm91Z2hseSB0aGUgc2FtZSwgYnV0IGtlbmRhbGwgaXMgdmVyeSBtdWNoIGRpZmZlcmVudC4gIFRoYXQncyBiZWNhdXNlIEtlbmRhbGwgaXMgYSB0ZXN0IG9mIHN0cmVuZ3RoIG9mIGRlcGVuZGVjZSAoaS5lLiBvbmUgY291bGQgYmUgd3JpdHRlbiBhcyBhIGxpbmVhciBmdW5jdGlvbiBvZiB0aGUgb3RoZXIpLCB3aGVyZWFzIFBlYXJzb24gYW5kIFNwZWFybWFuIGFyZSBuZWFybHkgZXF1aXZhbGVudCBpbiB0aGUgd2F5IHRoZXkgY29ycmVsYXRlIG5vcm1hbGx5IGRpc3RyaWJ1dGVkIGRhdGEuICBBbGwgb2YgdGhlc2UgY29ycmVsYXRpb25zIGFyZSBjb3JyZWN0IGluIHRoZWlyIHJlc3VsdCwgaXQncyBqdXN0IHRoYXQgUGVhcnNvbi9TcGVhcm1hbiBhcmUgbG9va2luZyBhdCB0aGUgZGF0YSBpbiBvbmUgd2F5LCBhbmQgS2VuZGFsbCBpbiBhbm90aGVyLg0KDQotIEEgYmV0dGVyICBzaXR1YXRpb24gZm9yIHNwZWFybWFuIG9yIGtlbmRhbGwgKGJ1dCBub3QgZm9yIHBlYXJzb24pIHdoZW4gdGhlIGRhdGEgaXMgT1JESU5BTCwgaW4gdGhhdCBpdCBpcyByYW5rZWQuIFNvIGxldCdzIHRyYW5zZm9ybSB0aGUgdGVzdCAxIHNjb3JlcyBpbnRvIHJhbmsgc2NvcmVzIG9mIGhvdyB3ZWxsIGVhY2ggY2xhc3NtYXRlIGRpZCByZWxhdGl2ZSB0byBvbmUgYW5vdGhlci4NCg0KYGBge3IsIG1lc3NhZ2U9RkFMU0UsZWNobz1UUlVFfQ0KIyNDcmVhdGUgYSByYW5rIGZvciB0ZXN0IG9uZS4gIFNlZSBtb3JlIGFib3V0IHRoZSAicmFuayIgZnVuY3Rpb24gYmVsb3c6DQojP3JhbmsNClRlc3QuMS5SYW5rIDwtcmFuayhDbGFzcy5EYXRhJFRlc3QuMSwgbmEubGFzdD1OQSx0aWVzLm1ldGhvZD0iZmlyc3QiKQ0KDQojIyBBbmQgbWFrZSBhIG5ldyBkYXRhIHNldCB3aXRoIHRoZSByYW5rIHRlc3QgYmFzZWQgb24gdGVzdCAxIHNjb3JlDQpDbGFzcy5SYW5rLjE8LWNiaW5kKFRlc3QuMS5SYW5rPVRlc3QuMS5SYW5rLENsYXNzLkRhdGEpDQoNCiNhbmQgbm93IGNoZWNrIG91ciB3b3JrDQpWaWV3KENsYXNzLlJhbmsuMSkNCmBgYA0KLUFuZCBub3cgbGV0J3MgY2hlY2sgdGhlIGNvcnJlbGF0aW9ucyBhZ2FpbiB3aXRoIHRoZSB0ZXN0IDEgcmFua2VkIGRhdGEgYW5kIHRoZSB0ZXN0IDIgcmF3IGRhdGE6DQpgYGB7cixtZXNzYWdlPUZBTFNFLGVjaG89VFJVRX0NCmNvcihDbGFzcy5SYW5rLjEkVGVzdC4xLlJhbmssQ2xhc3MuUmFuay4xJFRlc3QuMiwNCiAgICBtZXRob2Q9YygicGVhcnNvbiIpKQ0KDQpjb3IoQ2xhc3MuUmFuay4xJFRlc3QuMS5SYW5rLENsYXNzLlJhbmsuMSRUZXN0LjIsDQogICAgbWV0aG9kPWMoInNwZWFybWFuIikpDQoNCmNvcihDbGFzcy5SYW5rLjEkVGVzdC4xLlJhbmssQ2xhc3MuUmFuay4xJFRlc3QuMiwNCiAgICBtZXRob2Q9Yygia2VuZGFsbCIpKQ0KYGBgDQoNCi0gSGVyZSBhZ2FpbiB3ZSBjYW4gc2VlIHRoYXQgcGVhcnNvbiBhbmQgc3BlYXJtYW4gYXJlIHZlcnkgc2ltaWxhciwgdGhvdWdoIHBlYXJzb24gaGFzIGNoYW5nZWQgc2xpZ2h0bHkuICBUaGlzIGlzIGxpa2VseSBkdWUgdG8gdGhlIGdyYW51bGFyaXR5IG9mIG9uZSBvZiB0aGUgc291cmNlcyBvZiBkYXRhIGNoYW5naW5nIHRvIHdob2xlIGludGVnZXJzIGluc3RlYWQgb2YgdGhlIG51bWVyb3VzIGRlY2ltYWwgcGxhY2VzIHRoZXkgaGFkIHByZXZpb3VzbHkuIEhvd2V2ZXIsIHdlIHNlZSB0aGF0IHNwZWFybWFuIGFuZCBLZW5kYWxsIGFyZSBleGFjdGx5IHRoZSBzYW1lLCBhcyB0aGV5IGlzIG5vdCBhcyBkZXBlbmRlbnQgdXBvbiB0aGUgZ3JhbnVsYXJpdHkgb2YgdGhlIGludGVnZXJzLg0KDQotIExldCdzIHRyYW5zZm9ybSB0aGUgc2Vjb25kIHNjb3JlIGludG8gYSByYW5rIGFzIHdlbGwsIGp1c3QgdG8gc2VlIGhvdyBpdCBsb29rczoNCg0KYGBge3IsbWVzc2FnZT1GQUxTRSwgZWNobz1UUlVFfQ0KVGVzdC4yLlJhbmsgPC1yYW5rKENsYXNzLlJhbmsuMSRUZXN0LjIsIG5hLmxhc3Q9TkEsdGllcy5tZXRob2Q9ImZpcnN0IikNCg0KQ2xhc3MuUmFuay4yPC1jYmluZChUZXN0LjIuUmFuaz1UZXN0LjIuUmFuayxDbGFzcy5SYW5rLjEpDQoNCmNvcihDbGFzcy5SYW5rLjIkVGVzdC4xLlJhbmssQ2xhc3MuUmFuay4yJFRlc3QuMi5SYW5rLA0KICAgIG1ldGhvZD1jKCJwZWFyc29uIikpDQoNCmNvcihDbGFzcy5SYW5rLjIkVGVzdC4xLlJhbmssQ2xhc3MuUmFuay4yJFRlc3QuMi5SYW5rLA0KICAgIG1ldGhvZD1jKCJzcGVhcm1hbiIpKQ0KDQpjb3IoQ2xhc3MuUmFuay4yJFRlc3QuMS5SYW5rLENsYXNzLlJhbmsuMiRUZXN0LjIuUmFuaywNCiAgICBtZXRob2Q9Yygia2VuZGFsbCIpKQ0KYGBgDQoNCi0gTm93IHdlIGNhbiBzZWUgdGhhdCBQZWFyc29uIGV4YWN0bHkgbWF0Y2hlcyBzcGVhcm1hbiwgYXMgd291bGQgYmUgZXhwZWN0ZWQgc2luY2UgdGhlIGludGVnZXJzIGFyZSBub3cgd2hvbGUgYWNyb3NzIHRoZSBib2FyZC4NCg0KLSBXaGlsZSB0aGVzZSBkYXRhIGFyZSB0ZWNobmljYWxseSBvcmRpbmFsLCB3aGF0IHdlJ3ZlIHJlYWxseSBkb25lIGlzIGEgdHJhbnNmb3JtYXRpb24gZnJvbSByYXcgc2NvcmVzIHRvIHJhbmsgaW50ZWdlcnMuICBXZSBzaG91bGQgZXhwZWN0IHRoZXNlIHRvIGNvcnJlbGF0ZSBuZWFybHkgdGhlIHNhbWUgKG9yIGV4YWN0bHkgdGhlIHNhbWUpIGFzIHRoZSByYXcgc2NvcmVzIHNpbmNlIHRoZXkgaW5oZXJlbnRseSBsaW5rZWQuICBBIGRpZmZlcmVudCB3YXkgdG8gYmV0dGVyIGV4cG9zZSB0aGUgZGlmZmVyZW5jZXMgYmV0d2VlbiB0aGVzZSBjb3JyZWxhdGlvbnMgbWF5IGJlIHRvIGNyZWF0ZSBhIG5vbi1ub3JtYWwgZGlzdHJpYnV0aW9uLCB3aGljaCBjYW4gY3JlYXRlIHByb2JsZW1zIGZvciB0aGUgUGVhcnNvbiBjb3JyZWxhdGlvbi4NCg0KLSBMZXQncyBtYWtlIGEgdW5pZm9ybSBkaXN0cmlidXRpb24gb2YgKGh5cG90aGV0aWNhbGx5LCBhcyB0aGlzIHdvdWxkIGxpa2VseSBiZSBub3JtYWxseSBkaXN0cmlidXRlZCBpbiByZWFsIGxpZmUpIHRoZSBjaGlsZHJlbidzIGF2ZXJhZ2UgbWF0aCBzY29yZXMgdGhyb3VnaG91dCB0aGUgeWVhci4NCg0KYGBge3IsIG1lc3NhZ2U9RkFMU0UsZWNobz1UUlVFfQ0KIyNDcmVhdGUgdGhlIG5ldyB2YXJpYmxlIHdpdGggYSBub3JtYWwgZGlzdHJpYnV0aW9uLg0KI0xvb2sgbW9yZSBhdCB0aGUgcnVuaWYgZnVuY3Rpb24gaGVyZQ0KIz9ydW5pZg0KDQojc28gbGV0cyBtYWtlIGEgbmV3IHRlc3QgMSB0aGF0IGhhcyBhIHVuaWZvcm0gZGlzdHJpYnV0aW9uIHdpdGggYSByYW5nZSBmcm9tIDUwLTEwMCB1c2luZyB0aGUgInJ1bmlmIiBmdW5jdGlvbiANCg0KTWF0aC5Bdmc8LXJ1bmlmKDQwMCxtaW49NTAsbWF4PTEwMCkNCg0KIyNMZXQncyBjaGVjayB0aGUgc2hhcGUgb2YgdGhlIGRpc3RyaWJ1dGlvbiBhbmQgbm90aWNlIGl0J3Mgbm90IG5vcm1hbA0KaGlzdChNYXRoLkF2ZykgDQoNCiNhbmQgbm93IHB1dCB0aGUgbmV3IHVuaWZvcm4gdGVzdCBpbnRvIHRoZSBkYXRhIHNldCANCkNsYXNzLlVuaTwtY2JpbmQoTWF0aC5Bdmc9TWF0aC5BdmcsQ2xhc3MuUmFuay4yKQ0KDQojYW5kIGNoZWNrIG91ciB3b3JrDQpWaWV3KENsYXNzLlVuaSkNCmBgYA0KDQpBbmQgbm93IGxldCdzIGxvb2sgYXQgb3VyIGNvcnJlbGF0aW9ucywgd2l0aCBvdXIgb3JpZ2luYWwgVGVzdCAyLiAgVGhlc2UgY29ycmVsYXRpb25zIGFyZSBnb2luZyB0byBiZSB2YXN0bHkgZGlmZmVyZW50IHRoYW4gb3VyIHByZXZpb3VzIGNvcnJlbGF0aW9ucy4NCg0KYGBge3IsbWVzc2FnZT1GQUxTRSxlY2hvPVRSVUV9DQoNCiMjbm93IGxldCdzIGRvIHNvbWUgY29ycmVsYXRpb25zIGJldHdlZW4gdGhlIG5ldyB1bmlmb3JtIHRlc3Qgc2NvcmVzIGFuZCB0aGUgb3JpZ2luYWwgdGVzdCAyIHNjb3JlcyANCmNvcihDbGFzcy5VbmkkTWF0aC5BdmcsQ2xhc3MuVW5pJFRlc3QuMiwNCiAgICBtZXRob2Q9Yygic3BlYXJtYW4iKSkNCg0KY29yKENsYXNzLlVuaSRNYXRoLkF2ZyxDbGFzcy5VbmkkVGVzdC4yLA0KICAgIG1ldGhvZD1jKCJwZWFyc29uIikpDQoNCmNvcihDbGFzcy5VbmkkTWF0aC5BdmcsQ2xhc3MuVW5pJFRlc3QuMiwNCiAgICBtZXRob2Q9Yygia2VuZGFsbCIpKQ0KYGBgDQoNCldoaWxlIGluIHJlYWxpdHkgaXQgbWF5IG5vdCBiZSB0aGUgY2FzZSB0aGF0IG1hdGggYWJpbGl0eSBhbmQgZW5nbGlzaCAob3IgbGFuZ3VhZ2UsIGdlbmVyYWxseSkgYWJpbGl0eSBhcmUgdGhpcyB1bmNvcnJlbGF0ZWQsIGluIG91ciBoeXBvdGhldGljYWwgd29ybGQgdGhleSBhcmUgdmVyeSB1bnJlbGF0ZWQuICBUaG91Z2ggcGVhcnNvbiBhbmQgc3BlYXJtYW4gbWF5IGJlIGNsb3NlIHRvIG9uZSBhbm90aGVyLCBzcGVhcm1hbiBpcyByZWxpYWJsZSBpbiB0aGlzIGNhc2UgYmVjYXVzZSB0aGUgZGF0YSBpcyBub3Qgbm9ybWFsbHkgZGlzdHJpYnV0ZWQuICBBZ2FpbiwgeW91IGNhbiBzdGlsbCBkbyBhIHBlYXJzb24gY29ycmVsYXRpb24gb24gbm9uLW5vcm1hbCBkYXRhLCBidXQgaXQncyBub3QgZ29pbmcgdG8gYmUgYXMgcmVsYWlibGUgYXMgYSBub24tcGFyYW1ldHJpYyB0ZXN0IHdoaWNoIGRvZXMgbm90IGFzc3VtZSBub3JtYWxpdHkuICBPbiB0aGUgb3RoZXIgaGFuZCwgd2UgY2FuIGFsc28gc2VlIHRoYXQgdGhlc2UgZGF0YSBhcmUgbm90IGxpbmVhcmx5IGRlcGVuZGVudCB1cG9uIG9uZSBhbm90aGVyLCBhcyB0aGUga2VuZGFsbCBjb3JyZWxhdGlvbiBpcyB2ZXJ5IGxvdyBhbHNvLg0KDQpOb3cgbGV0cyByYW5rIG9yZGVyIHRlc3QgMSwgdHVybmluZyBpdCBpbnRvIG9yZGluYWwgZGF0YSwgYW5kIHNlZSB3aGF0IGhhcHBlbnMNCg0KYGBgIHtyLG1lc3NhZ2U9RkFMU0UsZWNobz1UUlVFfQ0KIyNyYW5rIG9yZGVyIHRlc3RzIGJhc2VkIG9uIHRlc3QgMSBzY29yZQ0KTWF0aC5VbmkuUmFuayA8LXJhbmsoQ2xhc3MuVW5pJE1hdGguQXZnLCBuYS5sYXN0PU5BLHRpZXMubWV0aG9kPSJmaXJzdCIpDQoNCg0KIyNhZGQgdGhlIHJhbmsgb3JkZXIgdGVzdHMgdG8gdGhlIGRhdGEgZnJhbWUNCkNsYXNzLlVuaS5SYW5rPC1jYmluZChNYXRoLlJhbms9TWF0aC5VbmkuUmFuayxDbGFzcy5VbmkpDQoNCiNhbmQgY2hlY2sgb3VyIHdvcmsNClZpZXcoQ2xhc3MuVW5pLlJhbmspDQoNCiNub3cgbGV0cyBjb3JyZWxhdGUgdGhvc2UgcmFua3Mgd2l0aCB0ZXN0IDINCmNvcihDbGFzcy5VbmkuUmFuayRNYXRoLlJhbmssQ2xhc3MuVW5pLlJhbmskVGVzdC4yLA0KICAgIG1ldGhvZD1jKCJzcGVhcm1hbiIpKQ0KDQpjb3IoQ2xhc3MuVW5pLlJhbmskTWF0aC5SYW5rLENsYXNzLlVuaS5SYW5rJFRlc3QuMiwNCiAgICBtZXRob2Q9YygicGVhcnNvbiIpKQ0KDQpjb3IoQ2xhc3MuVW5pLlJhbmskTWF0aC5SYW5rLENsYXNzLlVuaS5SYW5rJFRlc3QuMiwNCiAgICBtZXRob2Q9Yygia2VuZGFsbCIpKQ0KYGBgDQoNCi0gTm93IHdlIGNhbiBzZWUgdGhhdCB0aGUgY29ycmVsYXRpb25zIGhhdmUgcmVtYWluZWQgYmFzaWNhbGx5IHRoZSBzYW1lLCBzaW1pbGFyIHRvIGFzIHdoZW4gd2UgZGlkIHRoaXMgd2l0aCB0aGUgbm9ybWFsbHkgZGlzdHJpYnV0ZWQgZGF0YS4gIEFnYWluLCB0aGUgc3BlYXJtYW4gKGZvciByZWxhdGlvbnNoaXApIGFuZCBrZW5kYWwgKGZvciBkZXBlbmRlbmNlKSBhcmUgZ29pbmcgdG8gYmUgbW9yZSByZWxpYWJsZSBoZXJlIHRoYW4gcGVhcnNvbi4NCg0KLSBOb3RlIHRoYXQgdGhpcyBkYXRhIChzaW5jZSBpdCB3ZW50IHRvIHNvIG1hbnkgZGVjaW1hbCBwb2ludHMpIGRpZCBub3QgaGF2ZSBhbnkgdGllcy4gIFdoZW4geW91IGhhdmUgZGF0YSB0aGF0IGlzIG9yaWdpbmFseSBpbiB3aG9sZSBpbnRlZ2VycywgdGhlIHJhbmsgZnVuY3Rpb24gaXMgbXVjaCBtb3JlIGltcG9ydGFudCB0byBiZSBhd2FyZSBvZiBpbiBob3cgaXQgaGFuZGxlcyB0aWVzLiANCg0KTGV0J3MgcXVpY2tseSBsb29rIGF0IGhvdyB0aGluZ3MgbWlnaHQgY2hhbmdlIGlmIHRob3NlIHVuaWZvcm0gbWF0aCBzY29yZXMgd2VyZSByb3VuZGVkIHByaW9yIHRvIHJhbmtpbmcNCg0KYGBge3IsbWVzc2FnZT1GQUxTRSxlY2hvPVRSVUV9DQojY3JlYXRlIHRoZSByb3VuZGVkIHZhbHVlcyBmcm9tIHRoZSBvcmlnaW5hbCBtYXRoIHNjb3Jlcw0KTWF0aC5BdmcuUiA8LXJvdW5kKENsYXNzLlVuaSRNYXRoLkF2ZyxkaWdpdHMgPSAwKQ0KI2JpbmQgdGhvc2UgdG8gYSBuZXcgZGF0YXNldA0KQ2xhc3MuTWF0aC5Sb3VuZDwtY2JpbmQoTWF0aC5Sb3VuZD1NYXRoLkF2Zy5SLENsYXNzLlVuaSkNCiN0aGlzIHZpZXdpbmcgaXMgb3B0aW9uYWwNCiNWaWV3KENsYXNzLk1hdGguUm91bmQpDQoNCiNub3cgcmFuayB0aGUgcm91ZG5lZCB2YWx1ZXMNCk1hdGguUmFuay5Sb3VuZCA8LXJhbmsoTWF0aC5BdmcuUiwgbmEubGFzdD1OQSx0aWVzLm1ldGhvZD0iZmlyc3QiKQ0KI2FuZCBiaW5kIHRoZW0gdG8gYSBuZXcgZGF0YXNldA0KQ2xhc3MuTWF0aC5Sb3VuZFJhbms8LWNiaW5kKE1hdGguUm91bmRSYW5rPU1hdGguUmFuay5Sb3VuZCxDbGFzcy5NYXRoLlJvdW5kKQ0KDQojYW5kIG5vdyB2aWV3DQpWaWV3KENsYXNzLk1hdGguUm91bmRSYW5rKQ0KYGBgDQoNCldlIGNhbiBhbHJlYWR5IHNlZSB0aGF0IHRoZSByYW5rZWQgbWF0aCBzY29yZXMgdGhhdCBkZXBlbmQgdXBvbiB0aGUgd2hvbGUgaW5nZXRlcnMgbWlnaHQgY2hhbmdlIHRoZXNlIGNvcnJlbGF0aW9uIHZhbHVlcywgYnV0IGxldCdzIGNoZWNrLg0KDQpgYGB7cixtZXNzYWdlPUZBTFNFLGVjaG89VFJVRX0NCmNvcihDbGFzcy5NYXRoLlJvdW5kUmFuayRNYXRoLlJvdW5kUmFuayxDbGFzcy5VbmkuUmFuayRUZXN0LjIsDQogICAgbWV0aG9kPWMoInNwZWFybWFuIikpDQoNCmNvcihDbGFzcy5NYXRoLlJvdW5kUmFuayRNYXRoLlJvdW5kUmFuayxDbGFzcy5VbmkuUmFuayRUZXN0LjIsDQogICAgbWV0aG9kPWMoInBlYXJzb24iKSkNCg0KY29yKENsYXNzLk1hdGguUm91bmRSYW5rJE1hdGguUm91bmRSYW5rLENsYXNzLlVuaS5SYW5rJFRlc3QuMiwNCiAgICBtZXRob2Q9Yygia2VuZGFsbCIpKQ0KYGBgDQoNClRoZXNlIGNoYW5nZXMgYXJlbid0IGRyYW1hdGljLCBidXQgaW4gdGhlIHJhbmsgcGFja2FnZSwgdGhlcmUgYXJlIDYgZGlmZmVyZW50IHdheXMgdG8gaGFuZGxlIHRpZSB2YWx1ZXMuIElmIHdlIGNoYW5nZSBpdCB0bywgc2F5LCAiYXZlcmFnZSIgZnJvbSAiZmlyc3QiDQoNCmBgYHtyLG1lc3NhZ2U9RkFMU0UsZWNobz1UUlVFfQ0KI2NyZWF0ZSB0aGUgcm91bmRlZCB2YWx1ZXMgZnJvbSB0aGUgb3JpZ2luYWwgbWF0aCBzY29yZXMNCk1hdGguQXZnLlJBIDwtcm91bmQoQ2xhc3MuVW5pJE1hdGguQXZnLGRpZ2l0cyA9IDApDQojYmluZCB0aG9zZSB0byBhIG5ldyBkYXRhc2V0DQpDbGFzcy5NYXRoLlJvdW5kQTwtY2JpbmQoTWF0aC5Sb3VuZD1NYXRoLkF2Zy5SQSxDbGFzcy5VbmkpDQojdGhpcyB2aWV3aW5nIGlzIG9wdGlvbmFsDQojVmlldyhDbGFzcy5NYXRoLlJvdW5kKQ0KDQojbm93IHJhbmsgdGhlIHJvdWRuZWQgdmFsdWVzDQpNYXRoLlJhbmsuUm91bmRBIDwtcmFuayhNYXRoLkF2Zy5SQSwgbmEubGFzdD1OQSx0aWVzLm1ldGhvZD0iYXZlcmFnZSIpDQojYW5kIGJpbmQgdGhlbSB0byBhIG5ldyBkYXRhc2V0DQpDbGFzcy5NYXRoLlJvdW5kUmFua0E8LWNiaW5kKE1hdGguUm91bmRSYW5rQT1NYXRoLlJhbmsuUm91bmRBLENsYXNzLk1hdGguUm91bmRBKQ0KDQojYW5kIG5vdyB2aWV3DQpWaWV3KENsYXNzLk1hdGguUm91bmRSYW5rQSkNCg0KY29yKENsYXNzLk1hdGguUm91bmRSYW5rQSRNYXRoLlJvdW5kUmFua0EsQ2xhc3MuVW5pLlJhbmskVGVzdC4yLA0KICAgIG1ldGhvZD1jKCJzcGVhcm1hbiIpKQ0KDQpjb3IoQ2xhc3MuTWF0aC5Sb3VuZFJhbmtBJE1hdGguUm91bmRSYW5rQSxDbGFzcy5VbmkuUmFuayRUZXN0LjIsDQogICAgbWV0aG9kPWMoInBlYXJzb24iKSkNCg0KY29yKENsYXNzLk1hdGguUm91bmRSYW5rQSRNYXRoLlJvdW5kUmFua0EsQ2xhc3MuVW5pLlJhbmskVGVzdC4yLA0KICAgIG1ldGhvZD1jKCJrZW5kYWxsIikpDQpgYGANCg0KQWdhaW4sIHdlIHNlZSB0aGF0IHRoZXNlIGNoYW5nZXMgYXJlbid0IGRyYW1hdGljLCBidXQgaXQgc2hvd3MgdGhhdCBldmVuIHNtYWxsIGRlY2lzaW9ucyBpbiBob3cgeW91ciBkYXRhIGlzIGhhbmRsZWQgY2FuIGFmZmVjdCB5b3VyIHJlc3VsdHMsIGV2ZW4gd2hlbiB0aGUgYmFzaXMgb2YgeW91ciBkYXRhIGlzIHRoZSBzYW1lLCBhbmQgdGhlIGNvcnJlbGF0aW9uIHlvdSB1c2UgaXMgdGhlIHNhbWUuICBJbiBvdGhlciBzdHVkaWVzLCB0aGlzIG1heSBncmVhdGx5IGltcGFjdCB5b3VyIGludGVycHJldGF0aW9ucyBvZiB5b3VyIGRhdGEuDQoNCiMgQ29uY2x1c2lvbg0KDQpHaXZlbiB3aGF0IHdlIHNlZSBhYm92ZSwgdGhlcmUgYXJlIGEgbnVtYmVyIG9mIHRoaW5ncyB0byBiZSBhd2FyZSBvZiBiZWZvcmUgZ29pbmcgd2l0aCB0aGUgY29tbW9ubHkgdXNlZCBwZWFyc29uIGNvcnJlbGF0aW9ucy4gIEJleW9uZCB0aGUgYXNzdW1wdGlvbnMsIGl0J3MgaW1wb3J0YW50IHRvIGtub3cgaWYgeW91IGFyZSBsb29raW5nIGZvciByZWxhdGlvbnNoaXAgb3IgZGVwZW5kZW5jZSBiZXR3ZWVuIHZhcmlhYmxlcy4gSXQncyBhbHNvIGltcG9ydGFudCB0byBiZSBhd2FyZSB3aGF0IG1heSBoYXBwZW4gdG8geW91ciBjb3JyZWxhdGlvbnMgaWYgeW91IHRyYW5zZm9ybSB5b3VyIGRhdGEgaW50byByYW5rZWQgc2NvcmVzICh0aG91Z2ggdGhhdCB3YXMgbm90IGEgaHVnZSBmYWN0b3IgaGVyZSksIG9yIGhvdyB0d28gZGlmZmVyZW50IGRpc3RyaWJ1dGlvbnMgb2YgZGF0YSBmcm9tIGRpZmZlcmVudCAoaW4gdGhpcyBjYXNlIHN1YmplY3QgYXJlYXMpIGNhbiBpbXBhY3Qgd2hhdCBzdGF0c2l0aWMgeW91ciB1c2UuIFRoZXJlIGFyZSBhIG51bWJlciBvZiBkaWZmZXJlbnQgdGhyZWFkcyBhY3Jvc3MgZm9ydW1zIGRpc2N1c3NpbmcgdGhlIGRpZmZlcmVuY2VzIGJldHdlZW4gdGhlc2Ugc3RhdHNpdGljcyAoZS5nLiBodHRwczovL3N0YXRzLnN0YWNrZXhjaGFuZ2UuY29tL3F1ZXN0aW9ucy8zOTQzL2tlbmRhbGwtdGF1LW9yLXNwZWFybWFucy1yaG8pIGlmIHlvdSBoYXZlIG1vcmUgc3BlY2lmaWMgcXVlc3Rpb25zIHJlZ2FyZGluZyBob3cgdG8gdXNlIHRoZXNlIHN0YXRpc3RpY3Mgd2l0aCB5b3VyIGRhdGEuDQoNCkl0IHRha2VzIGRpbGxpZ2VuY2UgdG8gdXNlIHRoZSByaWdodCBjb3JyZWxhdGlvbiEgDQoNCg==, A Language, not a Letter: Learning Statistics in R, https://statistics.laerd.com/spss-tutorials/pearsons-product-moment-correlation-using-spss-statistics.php, http://www.purplemath.com/modules/boxwhisk3.htm, http://www.statstutor.ac.uk/resources/uploaded/spearmans.pdf, http://www.oxfordmathcenter.com/drupal7/node/246, https://www.quora.com/Probability-statistics-What-is-the-difference-between-dependence-and-correlation-What-is-the-physical-difference, http://www.statisticssolutions.com/correlation-pearson-kendall-spearman/, https://stackoverflow.com/questions/28416897/r-create-dataset-with-specific-correlation-in-r, https://stats.stackexchange.com/questions/3943/kendall-tau-or-spearmans-rho.

International Help Me Sign Language, Kirk Cousins News Today, Himani Shivpuri Family, Title Examination Checklist, Men's Silver Bracelets In Pakistan, Famous Soccer Players With Number 22, Goals Should Be Which Of The Following?,